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Abstract— The Particle-based Rapidly-exploring Random
Tree (pRRT) algorithm is a new method for planetary rover
path planning in very rough terrain. The Rapidly-exploring
Random Tree algorithm is a planning technique that accounts
for effects such as vehicle dynamics by incrementally building
a tree of reachable states. pRRT extends the conventional
RRT algorithm by explicitly considering uncertainty in sensing,
modeling, and actuation by treating each addition to the tree
as a stochastic process.

The pRRT algorithm has been experimentally verified in
simulation, and shown to produce plans that are significantly
more robust than conventional RRT. Our recent work has
investigated several vehicle models to improve the performance
and accuracy of the pRRT algorithm in simulation. Based on
these results, we have integrated the simulator with the iRobot
ATRV-Jr hardware platform and tested and verified the pRRT
algorithm using IPC communication.

I. INTRODUCTION

One of the most challenging aspects of mobile robot

path planning is the planner’s lack of complete knowledge.

Imperfect sensors present limited and imprecise information

about the world around a robot. Modelling techniques make

simplifying assumptions about this sensor data in order to

save memory or computational complexity. Even the actua-

tion of the robot itself is not modelled with infinite precision.

In many cases, the inaccuracies in sensing, modelling, and

actuation are small enough to be safely ignored, or the robot

can compensate during execution of the plan.

Often, though, ignoring this problem is not enough. Many

robots lack the sensor capability or processing power to de-

tect and correct unexpected results while executing planned

actions. Additionally, robots such as planetary rovers cannot

afford to take any risks with their safety. If a rover were to

become damaged, stuck, or overturned on another planet,

there is no opportunity to repair it. Thus, we recognize

a need for path planners to account for uncertainty in

sensing, modelling, and actuation. If the uncertainty of data

and algorithmic parameters is explicitly considered when

planning, it will be possible to create plans which are more

robust to uncertainty. That is, the robot will be more likely

to precisely follow the plan despite this uncertainty.

This work considers a planetary rover, similar to the

Mars Exploration Rovers (MER), traversing rough terrain.

We assume that the rover uses stereo vision to sense the
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shape of the terrain nearby, but the composition of the terrain

cannot be precisely determined. This leads to uncertainty

in the terrain friction, and thus the rover’s behavior as it

moves. For the sake of safety, the current MER navigation

strategy is cautious to remain far from obstacles. Even if

the rover were to behave in an unexpected manner, the

likelihood of impacting an obstacle is still quite low. The

disadvantage of this approach is that, in especially rough

terrain, autonomous planning algorithms may be unable to

find any path to move forward. In this case, the rover would

cease to drive autonomously, and wait for explicit driving

commands from operators on Earth. It is our hope that by

modelling the uncertainty in rover operation, it might be

possible for the rover to continue driving autonomously in

more difficult situations without sacrificing safety.

II. RELATED WORK

Previous work in path planning has taken several ap-

proaches to planning with uncertainty. One of the most com-

mon simplifying approaches is to ensure proper operation in

the worst case scenario. For example, if uncertainty is only

considered in actuation, but not in sensing or modelling, Hait

and Siméon [1] consider the range of possible rover poses

and test for impact with the terrain. Related work by Esposito

in the domain of plan validation [2] samples several possible

values of the uncertain parameter from a given distribution

and repeats planning for each value. In the more general

case, approaches such as Iagnemma’s [3] computes the cost

metric of traversing a particular region based on the worst

case estimate of uncertainty.

Another tactic for dealing with uncertainty is to construct

an initial plan, perhaps avoiding areas with the greatest

uncertainty, then replan as new sensor information becomes

available. This strategy, emphasizing efficient structures for

replanning as uncertainty changes, has been explored by Hsu

[4] and Leven [5]. Similarly, Burns and Brock [6] present an

active sensing technique which adjusts planned motions in

order to collect additional information about uncertain areas,

in order to aid replanning.

The approach most similar to our own was presented by

Gonzalez and Stentz [7]. This work, again, considers only

actuation uncertainty, which is modelled as a zero-mean

symmetric Gaussian. However, they are able to compute

resolution-optimal paths for a point robot using the grid-

based A∗ planner [8].
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Fig. 1. An RRT extension

III. ALGORITHM

The Particle RRT (pRRT) algorithm is an extension to the

Rapidly-exploring Random Tree (RRT) algorithm introduced

by Lavalle and Kuffner [9]. RRT is a widely-used algorithm

for motion planning in high-dimensional spaces with kino-

dynamic constraints. The operation of RRT is conceptually

simple. Each iteration of the algorithm, as depicted in figure

1, begins with a tree of states that the rover can reach. At

the first step, this tree only consists of the initial state of

the rover. A new state p is chosen stochastically from the

state space, and the nearest node q in the tree is determined.

An action is estimated to reach p from q, and the action

is executed. The resulting state x is added to the tree. The

planner may compute the forward simulation of the action

with any level of fidelity appropriate to the task at hand. It

is not necessary for the final state x to coincide with p, so it

is often preferable to select the action using simple inverse

kinematics, but simulate the result of the action using more

accurate dynamic models.

The extension introduced by pRRT produces distributions

of states, rather than single states, at each node of the tree.

The distributions are nonparametric, and are derived from

the uncertainty specified as input to the algorithm, and the

forward simulation process itself. Specifically, we use a set of

discrete particles to estimate the distribution at each node.

For each extension added to the tree, several particles are

computed by a Monte Carlo process. To compute a single

particle, one particle from the node q is chosen as the

start state, and a value is drawn from the prior distribution

over the uncertain parameter (in our case, terrain friction).

Simulations of the same action under different values for

friction will result in different final states for the rover. After

simulating several times in this manner, the resulting particles

are clustered into one or more nodes, which are added to

the tree with the same parent. The clustering procedure is

described in detail in a previous publication [10], but its

purpose is to separate qualitatively different particles into

different nodes.

In general, building a planning tree while accounting for

uncertainty should result in nodes whose variance grows

with the depth in the tree. However, since the clustering

Fig. 2. Execution error in open and closed loop modes.

step permits a single extension to be broken into more than

one node, the variance is split as well. In addition, the

probability of a single particle is associated with the prior

likelihood of the sampled value of friction used to produce

it. Since the prior over the uncertain parameter can have an

arbitrary probability distribution function (PDF) and nodes

may contain different numbers of particles, some nodes will

contain more probability mass than others. Nodes which

combine both low variance and high probability are good

candidates for path planning, because we expect the rover

to be able to reach them accurately despite the uncertainty.

Consequently, a path of such nodes (from the root of the tree

to a leaf) can be executed with greater accuracy by the rover.

Thus, as the planning tree is built, there is a bias towards

extending new leaves from such high-probability paths. This

bias is implemented using a selection mechanism similar to

that introduced by Urmson in [11].

The pRRT algorithm was tested in simulation and shown

to produce paths which can be followed with reduced exe-

cution error compared to conventional RRT. Tests were con-

ducted using several synthetic and realistic terrain models.

RRT planned a path using a typical assumption of terrain

friction, while pRRT assumed a uniform prior over a range of

friction values. After planning a path with each algorithm, the

path was executed open-loop several times, using a different

constant value for friction each time. Endpoint error was

measured as a percentage of the initial distance from start to

goal.

The results are summarized in the figure 2, which shows

the error in executing the planned path as a function of the

terrain friction during execution. Although this algorithm was

designed primarily to enhance the path planning capabilities

of rovers which can obtain little or no sensor feedback

during execution, this plot shows that closed-loop driving is

improved as well. The plots labelled ‘execution monitoring’

were planned in an identical manner, but errors during

execution were used to correct subsequent actions using the

pure pursuit [12] strategy. Our tests show that even open-

loop execution of a path planned with pRRT tends to result

in less error than closed-loop driving using a path planned

by RRT.



IV. THE OPTIMAL VEHICLE MODEL

In this part we try to make the optimal vehicle model

to reduce execution errors over the planned path in the

simulator. During development and testing of the path plan-

ning algorithm, two different simulators must be used – an

internal and an external simulator. The internal simulator is

used by the path planner to generate a path with a specific

vehicle model, and the external simulator is used as testbed

to actually execute over the plan generated in the internal

simulator. In preparation for deploying the software on a real

hardware platform, we have performed tests using NASA

JPL’s ROAMS simulator [13] [14]as the external simulator.

After generating the plan, the internal simulator send that

path to the external simulator or a real robot through a

communication channel such as IPC [15]. Details of imple-

mentation on a robotic hardware platform are discussed in

section V. In either case, though, the internal simulator is

expected to be an imprecise model of the real world.

It is important that we obtain a reliable and efficient path

which can be executed with very small end-point errors

because we are dealing with uncertain information and we

wish to minimize risk. However, computational efficiency is

also a high priority, and the use of a simpler model in the

internal simulator can result in lower computational cost. For

this reason, we investigate the tradeoff between high-cost,

high-fidelity models and low-cost, lower-fidelity models.

The FIDO model (high fidelity model) is used in the exter-

nal simulator, and this model is close to real robot platform.

We have made three different vehicle models – 4-wheeled

basic, 6-wheeled basic and 6-wheeled rocker-bogie model –

in the internal simulator to investigate their effects on the

actual execution errors over the planned path. All plans for

these tests are constructed using pRRT. The evaluation factor

is the comparison results based on the external simulator’s

execution errors on the same conditions using the planned

path. The vehicle model’s controls are essential to operate

the vehicle practically and get the reasonable movement of

the vehicle with very small errors. Unfortunately, physics

engines are actually not perfect, and the model in the internal

simulator needs manual adjustment to fit the real rover be-

havior. Thus, to achieve acceptable performance, we picked

the property values for each designed model manually.

A. 4-wheeled Basic Model

First, we made a 4-wheeled basic model [16] to generate

the plan and we test it in the simulator (See figure 3).

Fig. 3. 4-wheeled basic model

TABLE I

PROPERTY VALUES

Property Value

Max velocity (vmax) 30m/s

Max curvature (θbody,mas) 0.2

Max torque (τmax) 1600

Car width (dimwidth) 0.37m

Car height (dimheight) 0.3014m

Car length (dimlength) 0.57m

Wheel width (wheelwidth) 0.1232m

Wheel radius (wheelradius) 0.1m

Suspension upper limit 0.3m

Suspension lower limit -0.3m

Suspension stiffness 800

Suspension damping 200

Suspension softness 0

We used the following equations [16] [17] and the values

in table I for the vehicle controller. To design this model,

we assumed front wheels can steer directly to change the

direction. With a desired velocity of a vehicle, we have to

assign different linear velocity into each wheel to make a

real turn.
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In these equations, vdesired is the desired velocity of a

vehicle. The remaining v terms are the computed linear

velocities for each wheel. The first subscript is l for left

or r for right, and the second is f for front or r for rear.

θbody is the curvature angle of a vehicle body, and θlf and

θrf are the steering angles of the left and right front wheels,

B. 6-wheeled Basic Model

Next, we made 6-wheeled basic model to generate the

plan (See figure 4). We used the same equations and values

(See Table I) as 4-wheeled case and additionally consider

the following equations for the control part of the vehicle.

In this model, we also assumed that only two front wheels

can steer to change the direction. To simplify, we assigned

the same linear velocity into added middle wheels as rear

wheels.



Fig. 4. 6-wheeled basic model

vlm = vlr =
1

2

∣

∣

∣

1

θbody
− s

∣

∣

∣

∣

∣

∣

1

θbody

∣

∣

∣

vdesired

vrm = vrr =
1

2

∣

∣

∣

1

θbody
+ s

∣

∣

∣

∣

∣

∣

1

θbody

∣

∣

∣

vdesired

where vlm and vrm are the linear velocities of the left and

right middle wheels, respectively.

C. 6-wheeled Rocker-bogie Model

For the last model, we devised the 6-wheeled rocker-bogie

model [18] (See figure 5). This model is designed with four

steerable wheels attached to front bar joints. However, in this

case, we should assign different steer angle values for each

wheel because the middle wheel needs a smaller angle to

achieve the desired turn.

Fig. 5. 6-wheeled rocker-bogie model

We used the following equations for the control part of

the vehicle based on 6-wheeled basic model, and values in

Table I and II.
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where θlm and θrm are the steer angle of the left and right

middle wheels.

D. Results

This project is motivated mainly by planetary rovers, such

as The Mars Exploration Rover (MER), and thus the main

goal of this project is to reduce actual end-point errors of

FIDO model in ROAMS simulator over the path generated in

CM Lab’s Vortex simulator. Because the ROAMS simulator

has an accurate vehicle model based on 6-wheeled rocker-

bogie mechanism, we can easily imagine that if we use

a vehicle model close to the actual one when the path is

generated, the measured errors in ROAMS simulator can be

reduced over the path. If we use a simpler model, we can get

the results much more efficiently. However, in this work we

are giving more weight to get reliable results because one

of our main goal is finding an agreeable model on the Mars

Exploration Rover.

In this experiment, the vehicle speed in the simulator is

set to 5km/h. We conducted the experiments with simulators

and used MATLAB to analyze and plot the graphs. We tested

each vehicle model with the plan generated by pRRT using

the simulator. For testing, we used four different scenarios

which have different goal positions on terrain maps based

on real data. Tests were repeated 20 times for each case

to get the average value. In the experiments, the ROAMS

simulator vehicle model is fixed as FIDO model, and we used

three different vehicle models in Vortex simulator to plan the

path. In the Table III, 4WB means 4-wheeled basic model,

6WB means 6-wheeled basic model, and 6WRB means 6-

wheeled rocker-bogie model. The plot in figure 6 shows

errors measured in ROAMS simulator. For the evaluation

factors, we used raw endpoint error and scaled endpoint error

for each case. Scaled end-point error can be simply obtained

by dividing a raw error by the straight-line distance from

start position to goal position.

As are shown in Table III and figure 6, the scaled endpoint

errors were reduced in the case in which the 6-wheeled

rocker-bogie model was used in the internal simulator. This

is because we use a more accurate vehicle model close to the

real robot (the vehicle in the external simulator or real robot

platforms) to generate the pRRT plan, so we can get more

reliable path for the testing platform. Of course, the results

depend on the specific property values in each model, and

thus we need to find the best values for each vehicle part.

TABLE II

CHANGED PROPERTY VALUES

Property Value

Car height (dimheight) 0.2009m

Car length (dimlength) 0.456m

Wheel width (wheelwidth) 0.1232m

Wheel radius (wheelradius) 0.1m

Bar width (barwidth) 0.01m

Bar height (barheight) 0.03m

Bar length (barlength)
Front: 0.2736m
Rear: 0.4104m



TABLE III

SCALED ENDPOINT ERRORS WITH PRRT PLAN

Scenario Distance 4WB 6WB 6WRB

Case1 2.2597m 0.1793m 0.1338m 0.1250m

Case2 4.4463m 0.1193m 0.1197m 0.1014m

Case3 6.3354m 0.1493m 0.1501m 0.1299m

Case4 6.6298m 0.1542m 0.1849m 0.1300m

Average 0.1505m 0.1471m 0.1216m

Error scope (Max-Min) 0.0600m 0.0652m 0.0286m
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Fig. 6. Scaled end-point error for pRRT plan

V. INTEGRATION WITH ATRV-JR

For the last part, we demonstrate the integration of the

pRRT planner with the iRobot ATRV-Jr robot platform. See

figure 7 for an overview of the system architecture. We

used the actual robot dimensions with the 4-wheeled basic

model to generate the pRRT plan. We have made three

simple scenarios and generated the optimal plan for each

case. The generated path was executed on the robot and we

measured the end-point errors. ATRV-Jr is operated using the

CLARAty architecture [19] which is a flexible framework to

support the development and integration of various mobile

robots. Within this architecture, we used the ’aj locomotor’

module to support ATRV-Jr’s hardware specific functions. To

support a remote control, we used IPC v3.7.10.

Figure 7 represents the overview of the integration with

the ATRV-Jr. This work can be divided into two parts –

internal and external part. Both parts share the CLARAty

architecture. The internal part is generating the pRRT plan

and setting the external simulation type with a ’mode’ value.

In this case, the mode value specifies the ATRV-Jr robot

platform. To execute the generated plan, it sends the distance

and curvature values to the robot with an IPC communication

channel. Whenever the robot arrives at the next node of the

plan, it sends a notifying signal to the internal planner, and

the planner sends the next movement direction to the robot

again.

Fig. 7. Overview - integration with the ATRV-Jr

TABLE IV

ATRV-JR PROPERTY VALUES

Property Value

Car width (dimwidth) 0.40m

Car height (dimheight) 0.41m

Car length (dimlength) 0.57m

Wheel width (wheelwidth) 0.1232m

Wheel radius (wheelradius) 0.1m

A. Results

To verify the results, we demonstrate three simple sce-

narios. To get more reliable results, we have used the same

property values of ATRV-Jr in the internal simulator to make

the plan (See table IV). The test procedure is pictured in

figure 10.

1) Test 1 - Test getting to the goal position along a

planned straight line: The details are shown in the figure

8 and table V. Figure 8 represents the generated plan over

the given terrain map. In the left view, the blue cylinder

represents the goal position, and the sequences of a green

circles represent the path obtained with pRRT planning

algorithm. The right view is showing the extended pRRT

nodes to get the goal positions.

Fig. 8. pRRT plan for Test 1

In the above table, we are showing the details for first test

case. We measured the actual end-point error of ATRV-Jr



TABLE V

TEST 1 RESULTS

Planned Path
Path build time 0.407684s

Path length 4.59887m

Endpoint error

Planned position
x: 4.59809
y: 0.0780552

Actual position
x: 4.60993
y: -0.0397487

Difference 0.118398m

with the generated plan in figure 8.

2) Test 2 - Test getting to the goal position along a

planned curved line: The details are shown in the following

table and figure 9. When the robot moved along a curved

path, it made a slightly bigger end-point error despite a

similar travel distance. This is because the robot is skid-

steer vehicle, and tries to make a turn, it uses the difference

between each side’s linear velocity of wheels. That causes

more slips while it moves.

Fig. 9. pRRT plan for Test 2

TABLE VI

TEST 2 RESULTS

Planned Path
Path build time 3.93594s

Path length 4.54368m

Endpoint error

Planned position
x: 4.26976
y: -1.56048

Actual position
x: 4.15812
y: -1.69545

Difference 0.175158m

3) Test 3 - Test getting to the goal position with obstacle

avoidance: The details are shown in the following table

and figure 11. Additional photographs of the test procedure

are shown in figure 12. In this result, the end-point errors

were reduced compared to the previous cases even though

the situation was more complicated. The main reason why

this happened is a change in the experiment venue. Previous

experiments were conducted indoors, but for the last case,

we did experiments outside, and the slip property of that

location is much smaller than the lab’s value.

Fig. 10. Photograph of the case with no obstacles

Fig. 11. pRRT plan for Test 3

Fig. 12. Photograph of the case with obstacle avoidance

VI. CONCLUSIONS

In this paper, we have explained the pRRT algorithm, and

demonstrated its performance in the simulation and simple

real cases. The pRRT algorithm is a new and extended

method for planetary rover path planning in very rough

terrain. With this algorithm, we also have tried to find the

optimal vehicle models to reduce the end-point errors. We

have created three different vehicle models - 4-wheeled basic,

6-wheeled basic and 6-wheeled rocker-bogie models, and

compared the performances among them. We could make

more reliable and optimal paths with pRRT algorithm than

basic RRT. Furthermore, when we have used the created

vehicle models, the end-point errors were about 0.121m

for for simulation cases, and about 0.132m for real cases.

Based on the resuls, we can conclude the control design and

coefficient values of the vehicle model are reasonable and



TABLE VII

TEST 3 RESULTS

Planned Path
Path build time 9.10327s

Path length 8.74798m

Endpoint error

Planned position
x: 7.0689
y: -5.15592

Actual position
x: 7.07212
y: -5.26122

Difference 0.105347m

representative of real-world performance.

VII. FUTURE WORK

We have showed the results in the simulation cases and

integrated with the ATRV-Jr platrom in simple scenarios.

However, in real and more complicated situations, we have

to consider more factors like the interaction between the soil

and vehicle, slip, and the coefficient of friction because we

cannot assume the ideal conditions. Even though we use

the same assumption and consider those factors, we cannot

guarantee the same results in the real world. For the next

step, we thus will verify pRRT algorithm on the uncertain

terrain with JPL’s FIDO Rover. Through more experiments,

we can show the difference between the simulated results and

real executions over more complicated scenarios, and verify

the performance and reliability of this method in uncertain

cases. In addition, we will apply learning algorithms to find

the optimal property values including weight of the body

and wheels, and the softness of each joint in the suspension

for the selected model. These properties are essential to get

the most accurate results in real cases because these values

represent the interaction between the environment and the

vehicle model.
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